MEIDP The Deepwater Gas Route to India
Introduction

Who?

SAGE

- South Asia Gas Enterprise Pvt Ltd (SAGE),

- Joint venture between the Indian Siddhomal group and UK based deepwater technology company

- Considering building a deepwater, transnational, natural gas pipeline system from the Middle East to India
Why? *India needs gas*

- Reserves over 2,000 TCF in India trading countries (including Qatar, Iran and Turkmenistan)
- The deepwater route provides a short secure distance between huge reserves and industrial heartland of India
- Route from Middle east is too short for LNG to be an economic transportation option
How? A pipeline across the Arabian Sea

- Building on the extensive study Oman to India Pipeline in the Mid 1990’s
- Sage concept studies have strengthened technical Viability
- Major body of deepwater design and pipelay experience has been accumulated over the last decade
Indian Natural Gas Supply

- **Import Requirement**: 1096, 1096, 1096, 2740, 3288, 3562, 3288
- **Indian domestic Supply**: 3014, 3014, 7397, 8219, 8767, 9041, 9041

<table>
<thead>
<tr>
<th>Year</th>
<th>2005</th>
<th>2010</th>
<th>2015</th>
<th>2020</th>
<th>2025</th>
<th>2030</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMSCFD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Import Requirement</td>
<td>1096</td>
<td>1096</td>
<td>1096</td>
<td>2740</td>
<td>3288</td>
<td>3562</td>
<td>3288</td>
</tr>
<tr>
<td>Indian domestic Supply</td>
<td>3014</td>
<td>3014</td>
<td>7397</td>
<td>8219</td>
<td>8767</td>
<td>9041</td>
<td>9041</td>
</tr>
</tbody>
</table>

Indian Natural Gas Supply

- MMSCFD

MOUs/Agreements to Co-operate with SAGE in developing MEIDP have been signed with:

- Indian Oil Corporation
- Oman Ministry of Oil and Gas
- GAIL
- NIGEC
- Peritus International Ltd.
- Engineers India Ltd.
- Saipem spa
- Heerema Marine Contractors
- TATA-CORUS steel
- WELSPUN
- FUGRO GeoConsulting Ltd.
- INTECSEA (UK) Ltd.
- Det Norske Veritas
Gas Routes to India
Historical Route Options

- Oman–India 1995
- Iran–India 1997
- Iran–India (200NM) 2003
- Iran–India (350NM) 2003
- MEIDP 2010
Difficulty of Deep Pipelay Projects

- 1991 Zeepipe II 40"
- 1992 Campos Bain 10"
- 1993 Transmed 26"
- 1993 Auger 12"
- 1994 Marlin 12"
- 1995 Troll Offenor 10"
- 1995 Popeye 6"
- 1995 Oman India 24"
- 1996 Mars 8"
- 1996 Menra 12"
- 1997 Europe 2 42"
- 1998 Roncador 10"
- 1999 Allegheny 12"
- 2000 Agaña 30"
- 2000 Malampaya 16"
- 2000 Ursa 18"
- 2000 Diana 18"
- 2000 Horn Mountain 12"
- 2001 Mica 8"
- 2001 Blue Stream 24"
- 2002 Canyon Express 12"
- 2004 Caesar 24"
- 2004 Cleopatra 16"
- 2005 Cleopatra Lateral 16"
- 2005 Caesar Lateral 24"
- 2005 Proteus 24"
- 2006 Okeanos Lateral 20"
- 2006 Atlantis Lateral - Caesar 24"
- 2006 Atlantis Lateral - Cleopatra 16"
- 2006 Independence Hub - Atlas 8"
- 2009 Perdido 10"
- 2009 MexGas 24"
- 2009 Cascade-Chinook 14"
- 2010 Block 31 - PSVM 12"
- 2005 Galo 24"
- 2009 Jack-St.Malo 24"
- 2010 Southstream 32"
- 2010 MEIDP (SAGE) 24"

Water Depth (m)

- Installed
- Under Construction
- Under Design
- Under Consideration

Oman India Ahead of its Time
MEIDP: The Time has come

OTC 21259 – May 2011
Ian Nash & Peter Roberts
Design Basis
Pipeline route Profile
MECS => OGCS => GPRT

OTC 21259 – May 2011
Ian Nash & Peter Roberts
Pipeline route Profile
MECS => GPRT

OTC 21259 – May 2011
Ian Nash & Peter Roberts
2010 Activities Completed

- Overall Project Management
- Design Basis definition
- Flow Assurance Studies
- Mechanical Design
- Onshore Compression Station Definition
- Offshore Compression Station Definition
- Quantified Risk Assessment - OIP Update
- Geohazard and Fault Crossing Assessment Phase 1
- Metocean data Phase 1
- GIS Data collection Phase 1
- Assessment of the effects of moderate heat treatment
2011 Activities Completed

• Overall Project Management
• Vessel & equipment capabilities review
• Pipeline intervention review
• Geohazard and fault crossing assessment phase 2
• Metocean data phase 2
• GIS data collection
• Riser and subsea by-pass definition
The route stays to the South of the Indus Fan to avoid expensive, difficult crossings.
Identified Risks

<table>
<thead>
<tr>
<th>Geohazard</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsunami</td>
<td>Oman and Indian coastline</td>
</tr>
<tr>
<td>Steep slopes</td>
<td>Oman and Indian continental slopes and the Qualhat Seamount</td>
</tr>
<tr>
<td>Seismic activity</td>
<td>Northern Oman, Kathiawar Peninsula (Gujarat, India) and along the Owen Fracture Zone</td>
</tr>
<tr>
<td>Fault displacements</td>
<td>Faults of the Owen Fracture Zone and the Indian shelf and slope</td>
</tr>
<tr>
<td>Liquefaction</td>
<td>Oman and Indian (inner) shelf</td>
</tr>
<tr>
<td>Slope failures</td>
<td>Oman and Indian Continental slope, Qualhat Seamount, channels of the Indus Fan</td>
</tr>
<tr>
<td>Turbidity currents</td>
<td>Indus Fan</td>
</tr>
</tbody>
</table>
Murray Ridge and Qualhat Seamount

- Qualhat Seamount location (Compression facility)
- Outside of all Territorial Waters
- Within helicopter supply range.
- Northern Slope 20deg similar to Landfalls.

OTC 21259 – May 2011
Ian Nash & Peter Roberts
Completed Studies – Metocean Phase 1

North West Monsoon

- Environmental Parameters
 - Mean Surface Currents
 - Mean Significant Wave Heights (3hr Storm)
 - Seabed Currents
 - Temperatures
 - Winds

South East Monsoon
Completed Studies - Mechanical Design

- DNV-OS-F101 using DNV 485 DSAW linepipe
- Supplementary requirement U material strength factor
- DNV technical report => Fabrication factor $\alpha_{fab} = 1.0$,
- Ovality = 0.5%

<table>
<thead>
<tr>
<th>KP Range (km)</th>
<th>WD Range (m)</th>
<th>Section Length (km)</th>
<th>Pipe ID (mm)</th>
<th>Selected Wall Thickness (mm)</th>
<th>Buckle Arrestor Required</th>
<th>Tonnage of Steel Required for Line Pipe (Tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 6.8</td>
<td>-82 - 8.8</td>
<td>6.8</td>
<td>610</td>
<td>40.5</td>
<td>No</td>
<td>4,418</td>
</tr>
<tr>
<td>6.8 - 40</td>
<td>8.8 - 659</td>
<td>33.2</td>
<td>610</td>
<td>32.9</td>
<td>No</td>
<td>17,318</td>
</tr>
<tr>
<td>40 - 110</td>
<td>659 - 2448</td>
<td>70</td>
<td>610</td>
<td>32.9</td>
<td>Yes</td>
<td>36,514</td>
</tr>
<tr>
<td>110 - 770</td>
<td>2448 - 3084</td>
<td>660</td>
<td>610</td>
<td>40.5</td>
<td>Yes</td>
<td>428,811</td>
</tr>
<tr>
<td>770 - 1150</td>
<td>3084 - 2690</td>
<td>380</td>
<td>610</td>
<td>36.6</td>
<td>Yes</td>
<td>221,779</td>
</tr>
<tr>
<td>1150 - 1210</td>
<td>2690 - 361</td>
<td>60</td>
<td>610</td>
<td>32.9</td>
<td>Yes</td>
<td>31,298</td>
</tr>
<tr>
<td>1210 - 1317.5</td>
<td>361 - 1.5</td>
<td>107.5</td>
<td>610</td>
<td>32.9</td>
<td>No</td>
<td>56,075</td>
</tr>
<tr>
<td>1317.5 - 1318</td>
<td>1.5 - 0</td>
<td>0.5</td>
<td>610</td>
<td>40.5</td>
<td>No</td>
<td>325</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>796,537</td>
</tr>
</tbody>
</table>
Completed Studies - Mechanical Design

Selected WT's
- 40.5mm
- 36.6mm
- 32.9mm
- 796500 tonnes

Pressure Collapse
DCC Buckling
Seabed Profile

Max. WD = 3443m (including 1.5% depth tolerance)
Installation Vessel J-Lay Demand

- J-Lay Demand
 - 1060 tonne normal lay
 - >1950 tonne A&R

- J-Lay Capacity
 - 1600 tonne normal lay
 - >2000 tonne A&R
New Pipelay Vessels under Construction

- **CastorONE (Saipem SpA):**
 - Operational early in 2012
 - Rated for 3500m Pipelay
 - J-Lay & S-Lay

- **Aegir (HMC):**
 - Operational early in 2014
 - Rated for 3500m Pipelay
 - J-Lay

- **Pieter Schelte (Allseas):**
 - Operational Mid 2014
 - Rated for 3500m Pipelay
 - S-Lay

OTC 21259 – May 2011
Ian Nash & Peter Roberts
The following hazards have been quantified:

- Trawling
- Anchoring
- Objects dropped from ships
- Ship sinking
- Ship grounding
- Internal corrosion
- External corrosion
- Material and construction defects
MEIDP v’s OIP Failure Frequency

OTC 21259 – May 2011
Ian Nash & Peter Roberts
Ongoing 2011 studies

- Establish no hydrotest principle
- Onshore compression station review
- Offshore layout optimisation
- Receiving terminal conceptual design
- Emergency repair equipment review
Planned 2011 studies

- Insurance risk review
- Survey definition and scope of work
- Define survey ITT and tender
- Environmental statement
- Mill Prequalification and Ring Test Collapse Programme
- Examine the effect of moderate heat treatment
The project Goal => first Gas in 2017

- 2010-2011 Feasibility Studies
- 2011-2012 Reconnaissance Surveys
- 2012-2013 FEED Studies, Detailed surveys.
- 2013-2015 Detailed Design, Equipment Trials,
- 2013-2015 Procurement of long lead items
- 2015-2017 Installation
MEIDP are no longer a giant leap forward, but rather the logical next step. The development of deepwater pipelay vessels capable of installing MEIDP due by 2014. Studies performed in 2009-2011 prove feasibility of the MEIDP project. Fabrication technologies exist within current mill capacities for MEIDP size/wall. Routes established to avoid the worst features of the Indus Fan, minimising project technical risks.
Economic and commercial summary

- The MEIDP pipeline
 - Provides the **most economic** method of gas supply to the Western coast of India
 - Enhances the **security of energy supply** for Indian subcontinent
 - **Promotes competition** in the Indian energy markets
 - Will contribute significantly towards the implementation of sustainable development strategies of an **integrated energy plan** for the Indian Subcontinent
Acknowledgements

The authors would like to thank South Asia Gas Enterprise PVT Ltd. for giving permission to publish this work, the team in Peritus, for their continued hard work on the project, DNV, Fugro GEOS, Fugro William Lettis and IntecSea for their contributions and support.
References

• NOAA, “Different types of production platforms”
 http://oceanexplorer.noaa.gov/explorations/06mexico/background/oil/media/types_600.html
• Saipem Vessel Data Castorone
 http://www.saipem.it/site/article.jsp?idArticle=5420&instance=2&node=2012&channel=2&ext=template/37DueColonne&int=article/1DefaultArticolo
• HMC Vessel Data Aegir
• Allseas Vessel Data Pieter Schelte
 http://www.allseas.com/uk/19/equipment/pieter-schelte.html